TABLE OF CONTENTS

COMPETENCY 1.0 ALGEBRA

SKILL 1.1 ALGEBRAIC STRUCTURES

1.1a. Know why the real and complex numbers are each a field, and that particular rings are not fields (e.g., integers, polynomial rings, matrix rings) ... 1

1.1b. Apply basic properties of real and complex numbers in constructing mathematical arguments (e.g., if $a < b$ and $c < 0$, then $ac > bc$) ... 3

1.1c. Know that the rational numbers and real numbers can be ordered and that the complex numbers cannot be ordered, but that any polynomial equation with real coefficients can be solved in the complex field ... 6

SKILL 1.2 POLYNOMIAL EQUATIONS AND INEQUALITIES

1.2a. Know why graphs of linear inequalities are half planes and be able to apply this fact (e.g., linear programming) ... 8

1.2b. Prove and use the following: the Rational Root Theorem for polynomials with integer coefficients; the Factor Theorem; the Conjugate Roots Theorem for polynomial equations with real coefficients; the Quadratic Formula for real and complex quadratic polynomials; the Binomial Theorem ... 15

1.2c. Analyze and solve polynomial equations with real coefficients using the Fundamental Theorem of Algebra ... 22
SKILL 1.3 FUNCTIONS

1.3a. Analyze and prove general properties of functions (i.e., domain and range, one-to-one, onto, inverses, composition, and differences between relations and functions) ... 27

1.3b. Analyze properties of polynomial, rational, radical, and absolute value functions in a variety of ways (e.g., graphing, solving problems) .. 30

1.3c. Analyze properties of exponential and logarithmic functions in a variety of ways (e.g., graphing, solving problems) 41

SKILL 1.4 LINEAR ALGEBRA

1.4a. Understand and apply the geometric interpretation and basic operations of vectors in two and three dimensions, including their scalar multiples and scalar (dot) and cross products 46

1.4b. Prove the basic properties of vectors (e.g., perpendicular vectors have zero dot product) .. 51

1.4c. Understand and apply the basic properties and operations of matrices and determinants (e.g., to determine the solvability of linear systems of equations) ... 54

COMPETENCY 2.0 GEOMETRY

SKILL 2.1 Parallelism

2.1a. Know the Parallel Postulate and its implications, and justify its equivalents (e.g., the Alternate Interior Angle Theorem, the angle sum of every triangle is 180 degrees) ... 61

2.1b. Know that variants of the Parallel Postulate produce non-Euclidean geometries (e.g., spherical, hyperbolic) 65
SKILL 2.2 PLANE EUCLIDEAN GEOMETRY

2.2a. Prove theorems and solve problems involving similarity and
congruence ..67

2.2b. Understand, apply, and justify properties of triangles (e.g., the
Exterior Angle Theorem, concurrence theorems, trigonometric
ratios, Triangle Inequality, Law of Sines, Law of Cosines, the
Pythagorean Theorem and its converse) ..78

2.2c. Understand, apply, and justify properties of polygons and
circles from an advanced standpoint (e.g., derive the area
formulas for regular polygons and circles from the area of a
triangle) ...91

2.2d. Justify and perform the classical constructions (e.g., angle
bisector, perpendicular bisector, replicating shapes, regular n-
gons for n equal to 3, 4, 5, 6, and 8) ..106

2.2e. Use techniques in coordinate geometry to prove geometric
theorems ..113

SKILL 2.3 THREE-DIMENSIONAL GEOMETRY

2.3a. Demonstrate an understanding of parallelism and
perpendicularity of lines and planes in three dimensions..............117

2.3b. Understand, apply, and justify properties of three-dimensional
objects from an advanced standpoint (e.g., derive the volume
and surface area formulas for prisms, pyramids, cones,
cylinders, and spheres) ..120

SKILL 2.4 TRANSFORMATIONAL GEOMETRY

2.4a. Demonstrate an understanding of the basic properties of
isometries in two- and three-dimensional space (e.g., rotation,
translation, reflection) ..124

2.4b. Understand and prove the basic properties of dilations (e.g.,
similarity transformations or change of scale)130
COMPETENCY 3.0 NUMBER THEORY

SKILL 3.1 NATURAL NUMBERS

3.1a. Prove and use basic properties of natural numbers (e.g., properties of divisibility) ... 133

3.1b. Use the Principle of Mathematical Induction to prove results in number theory ... 136

3.1c. Know and apply the Euclidean Algorithm .. 138

3.1d. Apply the Fundamental Theorem of Arithmetic (e.g., find the greatest common factor and the least common multiple, show that every fraction is equivalent to a unique fraction where the numerator and denominator are relatively prime, prove that the square root of any number, not a perfect square number, is irrational) .. 139

COMPETENCY 4.0 PROBABILITY AND STATISTICS

SKILL 4.1 PROBABILITY

4.1a. Prove and apply basic principles of permutations and combinations .. 142

4.1b. Illustrate finite probability using a variety of examples and models (e.g., the fundamental counting principles) 146

4.1c. Use and explain the concept of conditional probability 150

4.1d. Interpret the probability of an outcome .. 152

4.1e. Use normal, binomial, and exponential distributions to solve and interpret probability problems ... 153
SKILL 4.2 STATISTICS

4.2a. Compute and interpret the mean, median, and mode of both discrete and continuous distributions ..157

4.2b. Compute and interpret quartiles, range, variance, and standard deviation of both discrete and continuous distributions162

4.2c. Select and evaluate sampling methods appropriate to a task (e.g., random, systematic, cluster, convenience sampling) and display the results ...168

4.2d. Know the method of least squares and apply it to linear regression and correlation ..173

4.2e. Know and apply the chi-square test ..179

COMPETENCY 5.0 CALCULUS

SKILL 5.1 TRIGONOMETRY

5.1a. Prove that the Pythagorean Theorem is equivalent to the trigonometric identity \(\sin^2 x + \cos^2 x = 1 \) and that this identity leads to \(1 + \tan^2 x = \sec^2 x \) and \(1 + \cot^2 x = \csc^2 x \)182

5.1b. Prove the sine, cosine, and tangent sum formulas for all real values, and derive special applications of the sum formulas (e.g., double angle, half angle) ..184

5.1c. Analyze properties of trigonometric functions in a variety of ways (e.g., graphing and solving problems)191

5.1d. Know and apply the definitions and properties of inverse trigonometric functions (i.e., arcsin, arccos, and arctan)197

5.1e. Understand and apply polar representations of complex numbers (e.g., DeMoivre's Theorem) ...201
SKILL 5.2 LIMITS AND CONTINUITY

5.2a. Derive basic properties of limits and continuity, including the Sum, Difference, Product, Constant Multiple, and Quotient Rules, using the formal definition of a limit205

5.2b. Show that a polynomial function is continuous at a point211

5.2c. Know and apply the Intermediate Value Theorem, using the geometric implications of continuity ...215

SKILL 5.3 DERIVATIVES AND APPLICATIONS

5.3a. Derive the rules of differentiation for polynomial, trigonometric, and logarithmic functions using the formal definition of derivative ..217

5.3b. Interpret the concept of derivative geometrically, numerically, and analytically (i.e., slope of the tangent, limit of difference quotients, extrema, Newton’s method, and instantaneous rate of change) ..225

5.3c. Interpret both continuous and differentiable functions geometrically and analytically and apply Rolle’s Theorem, the Mean Value Theorem, and L’Hopital’s rule232

5.3d. Use the derivative to solve rectilinear motion, related rate, and optimization problems ...238

5.3e. Use the derivative to analyze functions and planar curves (e.g., maxima, minima, inflection points, concavity)242

5.3f. Solve separable first-order differential equations and apply them to growth and decay problems ...249
SKILL 5.4 INTEGRALS AND APPLICATIONS

5.4a. Derive definite integrals of standard algebraic functions using the formal definition of integral ... 255

5.4b. Interpret the concept of a definite integral geometrically, numerically, and analytically (e.g., limit of Riemann sums) 261

5.4c. Prove the Fundamental Theorem of Calculus, and use it to interpret definite integrals as antiderivatives 263

5.4d. Apply the concept of integrals to compute the length of curves and the areas and volumes of geometric figures 266

SKILL 5.5 SEQUENCES AND SERIES

5.5a. Derive and apply the formulas for the sums of finite arithmetic series and finite and infinite geometric series (e.g., express repeating decimals as a rational number) .. 272

5.5b. Determine convergence of a given sequence or series using standard techniques (e.g., Ratio, Comparison, Integral Tests) 279

5.5c. Calculate Taylor series and Taylor polynomials of basic functions .. 283
COMPETENCY 6.0 HISTORY OF MATHEMATICS

SKILL 6.1 CHRONOLOGICAL AND TOPICAL DEVELOPMENT OF MATHEMATICS

6.1a. Demonstrate understanding of the development of mathematics, its cultural connections, and its contributions to society..286

6.1b. Demonstrate understanding of the historical development of mathematics, including the contributions of diverse populations as determined by race, ethnicity, culture, geography, and gender..287

CONSTRUCTED RESPONSE EXAMPLES...289

CURRICULUM AND INSTRUCTION ...295

SAMPLE TEST ...301

ANSWER KEY ...314

RIGOR TABLE ...315

RATIONALES WITH SAMPLE QUESTIONS ..316